0%

分布式CAP理论与BASE理论

CAP BASE 理论

CAP理论

CAP理论是分布式工程项目邻域的基石理论。
CAP一共三个概念:C:Consistency 一致性;A:Availability 可用性;P:Partition tolerance 分区容忍性

  • 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点保持同一份数据的最新版本)
  • 可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(读,写均需要满足)
  • 分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。(不会出现延迟,丢包等)

C与A的抉择

由于当前的网络不能保证一定不会出现延迟,丢包等问题所以P是必须选择的一项,那么剩下的C和A需要选择其中一个。
那么为啥不能全选呢?

CAP三者不能全部满足

在分布式系统的设计中,没有一种设计可以同时满足一致性,可用性,分区容错性 3个特性
我们来看一个简单的问题:
我们来看一个简单的问题, 一个DB服务 搭建在两个机房(北京,广州),两个DB实例同时提供写入和读取

  1. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功
    在没有出现网络故障的时候,满足CA原则,C 即我的任何一个写入,更新操作成功并返回客户端完成后,分布式的所有节点在同一时间的数据完全一致,A 即我的读写操作都能够成功,但是当出现网络故障时,不能同时保证CA,即P条件无法满足

  2. 假设DB的更新操作是只写本地机房成功就返回,通过binlog/oplog回放方式同步至侧边机房
    这种操作保证了在出现网络故障时,双边机房都是可以提供服务的,且读写操作都能成功,意味着他满足了AP ,但是它不满足C,因为更新操作返回成功后,双边机房的DB看到的数据会存在短暂不一致,且在网络故障时,不一致的时间差会很大(仅能保证最终一致性)

  3. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功且网络故障时提供降级服务
    降级服务,如停止写入,只提供读取功能,这样能保证数据是一致的,且网络故障时能提供服务,满足CP原则,但是他无法满足可用性原则

C与A

一致性,这里的一致性并不是弱一致性或者强一致性,一致性指的是完全一致性。
对于大多数互联网应用来说,因为机器数量庞大,部署节点分散,网络故障是常态,可用性是必须需要保证的,所以只有设置一致性来保证服务的AP,通常常见的高可用服务追求稳定性本质都是放弃C选择AP,对于需要确保强一致性的场景,如银行,通常会权衡CA和CP模型,CA模型网络故障时完全不可用,CP模型具备部分可用性,实际的选择需要通过业务场景来权衡(并不是所有情况CP都好于CA,只能查看信息不能更新信息有时候从产品层面还不如直接拒绝服务)

BASE理论

BASE是 Basically Available(基本可用)、Soft state(软状态)和Eventually consistent(最终一致性) 三个短语的简写,BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的结论,是基于CAP定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。接下来我们着重对BASE中的三要素进行详细讲解。

基本可用

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用,以下两个就是“基本可用”的典型例子。

响应时间上的损失:正常情况下,一个在线搜索引擎需要0.5秒内返回给用户相应的查询结果,但由于出现异常(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。

功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。

弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。

最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。亚马逊首席技术官Werner Vogels在于2008年发表的一篇文章中对最终一致性进行了非常详细的介绍。他认为最终一致性时一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够获取到最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟,系统负载和数据复制方案设计等因素。在实际工程实践中,最终一致性存在以下五类主要变种。

  1. 因果一致性:
    因果一致性是指,如果进程A在更新完某个数据项后通知了进程B,那么进程B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程A更新后的最新值,即不能发生丢失更新情况。与此同时,与进程A无因果关系的进程C的数据访问则没有这样的限制。
  2. 读己之所写:
    读己之所写是指,进程A更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者而言,其读取到的数据一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。
  3. 会话一致性:
    会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
  4. 单调读一致性:
    单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。
  5. 单调写一致性:
    单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。

以上就是最终一致性的五类常见的变种,在实践中其实可以将其中的若干个变种相互结合起来,以构建一个具有最终一致性特性的分布式系统。
其实,最终一致性并不是只有那些大型分布式系统才设计的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。在同步方式中,数据的复制通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致。而在异步方式中,备库的更新往往存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的的数据将是旧的,因此就出现了不一致的情况。当然,无论是采用多次重试还是人为数据订正,关系型数据库还是能搞保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。

总结

总的来说,BASE理论面向的是大型高可用可扩展的分布式系统,和传统事务的ACID特性使相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性与BASE理论往往又会结合在一起使用。